当前位置:首页 > 翻译学习

土建工程计算书模板-中英对照

发布时间:2012-10-30      阅读次数:2126

土建工程计算书模板-中英对照


2.1.3.5 混凝土工程量计算:
    (1)池壁: [(L-t1)+(B-t1)]×2×t1×h2
              = [(6.200-0.450)+(4.400-0.450)]×2×0.450×6.300 = 55.00 m3
    (2)底板: (L+2×t2)×(B+2×t2)×h3
              = (6.200+2×0.300)×(4.400+2×0.300)×0.500 = 17.00 m3
    (3)水池混凝土总方量 = 55.00+17.00 = 72.00 m3
-----------------------------------------------------------------------
【理正水池设计 V1.0版   日期: 2009-01-02 02:15:58】
=======================  END OF FILE  =================================
2.2  进水井计算书
执行规范:
  《混凝土结构设计规范》(GB 50010-2002),  本文简称《混凝土规范》
  《建筑地基基础设计规范》(GB 50007-2002),  本文简称《地基规范》
  《给水排水工程构筑物结构设计规范》(GB50069-2002),  本文简称《给排水结构规范》
  《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002),  本文简称《水池结构规程》
-----------------------------------------------------------------------
2.2.1 基本资料
2.2.1.1 几何信息
    水池类型: 无顶盖 半地上
    长度L=2.500m, 宽度B=2.000m, 高度H=6.800m, 底板底标高=-6.500m
    池底厚h3=500mm, 池壁厚t1=250mm,底板外挑长度t2=300mm
    注:地面标高为±0.000。
   
                 (平面图)                (剖面图)
2.2.1.2 土水信息
    土天然重度18.00 kN/m3 , 土饱和重度20.00kN/m3, 土内摩擦角30度
    地基承载力特征值fak=100.0kPa, 宽度修正系数ηb=0.00, 埋深修正系数ηd=1.00
    地下水位标高-3.000m,池内水深6.300m, 池内水重度10.00kN/m3,
    浮托力折减系数1.00, 抗浮安全系数Kf=1.05
2.2.1.3 荷载信息
    活荷载: 地面10.00kN/m2,  组合值系数0.90
    恒荷载分项系数: 水池自重1.20,  其它1.27
    活荷载分项系数: 地下水压1.27,  其它1.27
    活荷载准永久值系数: 顶板0.40,  地面0.40,  地下水1.00,  温湿度1.00
    不考虑温湿度作用.
2.2.1.4 钢筋砼信息
    混凝土: 等级C30,  重度25.00kN/m3,  泊松比0.20
    保护层厚度(mm): 池壁(内35,外35),  底板(上35,下35)
    钢筋级别: HRB335,  裂缝宽度限值: 0.10mm,  配筋调整系数: 1.00
2.2.2 计算内容
(1) 地基承载力验算
(2) 抗浮验算
(3) 荷载计算
(4) 内力(不考虑温度作用)计算
(5) 配筋计算
(6) 裂缝验算
(7) 混凝土工程量计算
2.2.3 计算过程及结果
    单位说明: 弯矩:kN.m/m   钢筋面积:mm2  裂缝宽度:mm
    计算说明:双向板计算按查表
              恒荷载:水池结构自重,土的竖向及侧向压力,内部盛水压力.
              活荷载:顶板活荷载,地面活荷载,地下水压力,温湿度变化作用.
              裂缝宽度计算按长期效应的准永久组合.
2.2.3.1 地基承载力验算
(1) 基底压力计算
    a.水池自重Gc计算
       池壁自重G2=305.00kN
       底板自重G3=100.75kN
       水池结构自重Gc=G2+G3=405.75 kN
    b.池内水重Gw计算
       池内水重Gw=189.00 kN
    c.覆土重量计算
       池顶覆土重量Gt1= 0 kN
       池顶地下水重量Gs1= 0 kN
       底板外挑覆土重量Gt2= 257.04 kN
       底板外挑地下水重量Gs2= 91.80 kN
       基底以上的覆盖土总重量Gt = Gt1 + Gt2 = 257.04 kN
       基底以上的地下水总重量Gs = Gs1 + Gs2 = 91.80 kN
    d.活荷载作用Gh
       顶板活荷载作用力Gh1= 7.50 kN
       地面活荷载作用力Gh2= 30.60 kN
       活荷载作用力总和Gh=Gh1+Gh2=38.10 kN
    e.基底压力Pk
       基底面积: A=(L+2×t2)×(B+2×t2)=3.100×2.600 = 8.06 m2
       基底压强: Pk=(Gc+Gw+Gt+Gs+Gh)/A
                   =(405.75+189.00+257.04+91.80+38.10)/8.060= 121.80 kN/m2
(2) 修正地基承载力
    a.计算基础底面以上土的加权平均重度rm
       rm=[3.500×(20.00-10)+3.000×18.00]/6.500
         = 13.69 kN/m3
    b.计算基础底面以下土的重度r
       考虑地下水作用,取浮重度,r=20.00-10=10.00kN/m3
    c.根据基础规范的要求,修正地基承载力:
       fa = fak + ηb γ(b - 3) + ηdγm(d - 0.5)
          = 100.00+0.00×10.00×(3.000-3)+1.00×13.69×(6.500-0.5)
          = 182.15 kPa
(3) 结论: Pk=121.80 < fa=182.15 kPa, 地基承载力满足要求。
2.2.3.2 抗浮验算
    抗浮力Gk=Gc+Gt+Gs=405.75+257.04+91.80= 754.59 kN
    浮力F=(2.500+2×0.300)×(2.000+2×0.300)×3.500×10.0×1.00
         =282.10 kN
    Gk/F=754.59/282.10=2.67 > Kf=1.05, 抗浮满足要求。
2.2.3.3 荷载计算
(1) 池壁荷载计算:
    a.池外荷载:
       主动土压力系数Ka= 0.33
       侧向土压力荷载组合(kN/m2):
部位(标高) 土压力标准值 水压力标准值 活载标准值 基本组合 准永久组合
池壁顶端(0.300) 0.00 0.00 0.00 0.00 0.00
地面(0.000) 0.00 0.00 3.33 3.81 1.33
地下水位处(-3.000) 18.00 0.00 3.33 26.67 19.33
底板顶面(-6.000) 28.00 30.00 3.33 77.47 59.33
    b.池内底部水压力: 标准值= 63.00 kN/m2, 基本组合设计值= 80.01 kN/m2
(2) 底板荷载计算(池内无水,池外填土):
    水池结构自重标准值Gc= 405.75kN
    基础底面以上土重标准值Gt= 257.04kN
    基础底面以上水重标准值Gs= 91.80kN
    基础底面以上活载标准值Gh= 38.10kN
    水池底板以上全部竖向压力基本组合:
      Qb = (405.75×1.20+257.04×1.27+91.80×1.27+38.10×1.27×0.90)/8.060
         = 120.78kN/m2
    水池底板以上全部竖向压力准永久组合:
      Qbe = (405.75+257.04+91.80×1.00+1.50×5.000×0.40+10.00×3.060×0.40)/8.060
          = 95.51kN/m2
    板底均布净反力基本组合:
      Q = 120.78-0.500×25.00×1.20
        = 105.78 kN/m2
    板底均布净反力准永久组合:
      Qe = 95.51-0.500×25.00
         = 83.01 kN/m2
(3) 底板荷载计算(池内有水,池外无土):
    水池底板以上全部竖向压力基本组合:
      Qb = [405.75×1.20+(2.000×1.500×6.300)×10.00×1.27]/8.060 = 90.19kN/m2
    板底均布净反力基本组合:
      Q = 90.19-(0.500×25.00×1.20+6.300×10.00×1.27) = -4.82kN/m2
    水池底板以上全部竖向压力准永久组合:
      Qbe = [405.75+(2.000×1.500×6.300)×10.00]/8.060 = 73.79kN/m2
    板底均布净反力准永久组合:
      Qe = 73.79-(0.500×25.00+6.300×10.00) = -1.71kN/m2
2.2.3.4 内力,配筋及裂缝计算
    弯矩正负号规则:
      池壁:内侧受拉为正,外侧受拉为负
      底板:上侧受拉为正,下侧受拉为负
    荷载组合方式:
      (1).池外土压力作用(池内无水,池外填土)
      (2).池内水压力作用(池内有水,池外无土)
    (3)L侧池壁内力:
        计算跨度: Lx= 2.250 m, Ly= 6.300 m ,  三边固定,顶边简支
        池壁类型: 深池壁
          计算方法: 0<H<2L 部分按照三边固定,顶边自由的双向板计算:Lx=2.250,Ly=4.500
                    H>2L 部分按照水平向单向板计算
          H=2L处池外土压力作用弯矩(kN.m/m):
            水平向跨中: 基本组合:4.69, 准永久组合:3.34
            水平向边缘: 基本组合:-9.38, 准永久组合:-6.68
          H=2L处池内水压力作用弯矩(kN.m/m):
            水平向跨中: 基本组合:-4.82, 准永久组合:-3.80
            水平向边缘: 基本组合:9.64, 准永久组合:7.59
          H=2L处水平向内力,与0<H<2L部分按双向板计算的水平向内力,取大值.
        基本组合作用弯矩表(kN.m/m)
部位 池外土压力 池内水压力 温湿度作用 基本组合
内侧-水平跨中 10.12 - - 10.12
     水平边缘 - 21.59 - 21.59
     竖直跨中 0.62 - - 0.62
     竖直上边缘 - 0.00 - 0.00
     竖直下边缘 - 20.26 - 20.26
外侧-水平跨中 - -10.44 - -10.44
     水平边缘 -20.92 - - -20.92
     竖直跨中 - -0.64 - -0.64
     竖直上边缘 0.00 - - 0.00
     竖直下边缘 -19.62 - - -19.62
        准永久组合作用弯矩表(kN.m/m)
   部位 池外土压力 池内水压力 温湿度作用 准永久组合
内侧-水平跨中 7.64 - - 7.64
     水平边缘 - 17.00 - 17.00
     竖直跨中 0.47 - - 0.47
     竖直上边缘 - 0.00 - 0.00
     竖直下边缘 - 15.96 - 15.96
外侧-水平跨中 - -8.22 - -8.22
     水平边缘 -15.77 - - -15.77
     竖直跨中 - -0.50 - -0.50
     竖直上边缘 0.00 - - 0.00
     竖直下边缘 -14.98 - - -14.98
    (4)B侧池壁内力:
        计算跨度: Lx= 1.750 m, Ly= 6.300 m ,  三边固定,顶边简支
        池壁类型: 深池壁
          计算方法: 0<H<2L 部分按照三边固定,顶边自由的双向板计算:Lx=1.750,Ly=3.500
                    H>2L 部分按照水平向单向板计算
          H=2L处池外土压力作用弯矩(kN.m/m):
            水平向跨中: 基本组合:4.40, 准永久组合:3.25
            水平向边缘: 基本组合:-8.81, 准永久组合:-6.51
          H=2L处池内水压力作用弯矩(kN.m/m):
            水平向跨中: 基本组合:-4.54, 准永久组合:-3.57
            水平向边缘: 基本组合:9.08, 准永久组合:7.15
          H=2L处水平向内力,与0<H<2L部分按双向板计算的水平向内力,取大值.
        基本组合作用弯矩表(kN.m/m)
部位 池外土压力 池内水压力 温湿度作用 基本组合
内侧-水平跨中 6.84 - - 6.84
     水平边缘 - 14.69 - 14.69
     竖直跨中 0.37 - - 0.37
     竖直上边缘 - 0.00 - 0.00
     竖直下边缘 - 12.56 - 12.56
外侧-水平跨中 - -7.07 - -7.07
     水平边缘 -14.24 - - -14.24
     竖直跨中 - -0.38 - -0.38
     竖直上边缘 0.00 - - 0.00
     竖直下边缘 -12.16 - - -12.16

 
        准永久组合作用弯矩表(kN.m/m)
部位 池外土压力 池内水压力 温湿度作用 准永久组合
内侧-水平跨中 5.19 - - 5.19
     水平边缘 - 11.57 - 11.57
     竖直跨中 0.28 - - 0.28
     竖直上边缘 - 0.00 - 0.00
     竖直下边缘 - 9.89 - 9.89
外侧-水平跨中 - -5.56 - -5.56
     水平边缘 -10.78 - - -10.78
     竖直跨中 - -0.30 - -0.30
     竖直上边缘 0.00 - - 0.00
     竖直下边缘 -9.29 - - -9.29
    (5)底板内力:
        计算跨度:Lx= 2.250m, Ly= 1.750m , 四边简支+池壁传递弯矩
        按双向板计算.
        1.池外填土,池内无水时,荷载组合作用弯矩表(kN.m/m)
        基本组合作用弯矩表
部位 简支基底反力 池壁传递弯矩 弯矩叠加
上侧-L向跨中 14.39 - -
     B向跨中 21.08 - 11.71
下侧-L向边缘 0.00 -12.16 -12.16
     B向边缘 0.00 -19.62 -19.62
     L向跨中 - -15.62 -1.23
     B向跨中 - -9.37 -

 
        准永久组合作用弯矩表
部位 简支基底反力 池壁传递弯矩 弯矩叠加
上侧-L向跨中 11.29 - -
     B向跨中 16.54 - 9.39
下侧-L向边缘 0.00 -9.29 -9.29
     B向边缘 0.00 -14.98 -14.98
     L向跨中 - -11.93 -0.64
     B向跨中 - -7.16 -
        2.池内有水,池外无土时,荷载组合作用弯矩表(kN.m/m)
        基本组合作用弯矩表
部位 简支基底反力 池壁传递弯矩 弯矩叠加
上侧-L向跨中 -0.66 16.13 15.48
     B向跨中 -0.96 9.68 8.72
     L向边缘 0.00 12.56 12.56
     B向边缘 0.00 20.26 20.26
        准永久组合作用弯矩表
部位 简支基底反力 池壁传递弯矩 弯矩叠加
上侧-L向跨中 -0.23 12.70 12.47
     B向跨中 -0.34 7.62 7.28
     L向边缘 0.00 9.89 9.89
     B向边缘 0.00 15.96 15.96
    (6)配筋及裂缝:
        配筋计算方法:按单筋受弯构件计算板受拉钢筋.
        裂缝计算根据《水池结构规程》附录A公式计算.
        按基本组合弯矩计算配筋,按准永久组合弯矩计算裂缝,结果如下:
 
        ①L侧池壁配筋及裂缝表(弯矩:kN.m/m, 面积:mm2/m, 裂缝:mm)
部位 弯矩 计算面积 实配钢筋 实配面积 裂缝宽度
内侧-水平跨中 10.12 536 D12@200 565 0.06
     水平边缘 21.59 536 D12@150 754 0.08
     竖直跨中 0.62 536 D12@200 565 0.00
     竖直上边缘 0.00 536 D12@200 565 0.00
     竖直下边缘 20.26 536 D12@150 754 0.08
外侧-水平跨中 -10.44 536 D12@200 565 0.07
     水平边缘 -20.92 536 D12@150 754 0.08
     竖直跨中 -0.64 536 D12@200 565 0.00
     竖直上边缘 0.00 536 D12@200 565 0.00
     竖直下边缘 -19.62 536 D12@150 754 0.07
        ②B侧池壁配筋及裂缝表(弯矩:kN.m/m, 面积:mm2/m, 裂缝:mm)
部位 弯矩 计算面积 实配钢筋 实配面积 裂缝宽度
内侧-水平跨中 6.84 536 D12@200 565 0.04
     水平边缘 14.69 536 D12@200 565 0.10
     竖直跨中 0.37 536 D12@200 565 0.00
     竖直上边缘 0.00 536 D12@200 565 0.00
     竖直下边缘 12.56 536 D12@200 565 0.08
外侧-水平跨中 -7.07 536 D12@200 565 0.05
     水平边缘 -14.24 536 D12@200 565 0.09
     竖直跨中 -0.38 536 D12@200 565 0.00
     竖直上边缘 0.00 536 D12@200 565 0.00
     竖直下边缘 -12.16 536 D12@200 565 0.08

 
        ③底板配筋及裂缝表(弯矩:kN.m/m, 面积:mm2/m, 裂缝:mm)
部位 弯矩 计算面积 实配钢筋 实配面积 裂缝宽度
上侧-L向跨中 15.48 1072 D16@150 1340 0.02
     B向跨中 11.71 1072 D16@150 1117 0.02
     L向边缘 12.56 1072 D16@150 1340 0.02
     B向边缘 20.26 1072 D16@150 1340 0.03
下侧-L向跨中 -1.23 1072 D16@150 1340 0.00
     B向跨中 - - - - -
     L向边缘 -12.16 1072 D16@150 1340 0.02
     B向边缘 -19.62 1072 D16@150 1340 0.03
        裂缝验算均满足.
2.2.3.5 混凝土工程量计算:
    (1)池壁: [(L-t1)+(B-t1)]×2×t1×h2
              = [(2.500-0.250)+(2.000-0.250)]×2×0.250×6.300 = 12.60 m3
    (2)底板: (L+2×t2)×(B+2×t2)×h3
              = (2.500+2×0.300)×(2.000+2×0.300)×0.500 = 4.03 m3
    (3)水池混凝土总方量 = 12.60+4.03 = 16.63 m3
-----------------------------------------------------------------------
【理正水池设计 V1.0版   日期: 2009-01-02 00:36:27】
=======================  END OF FILE  =================================

2.3上部罩棚计算书
     总信息 ..............................................
     结构材料信息:                         钢砼结构               
     混凝土容重 (kN/m3):                   Gc   =  25.00
     钢材容重 (kN/m3):                     Gs   =  78.00
     水平力的夹角 (Rad):                   ARF  =   0.00
     地下室层数:                           MBASE=      0
     竖向荷载计算信息:                     按模拟施工加荷计算方式 
     风荷载计算信息:                       计算X,Y两个方向的风荷载
     地震力计算信息:                       计算X,Y两个方向的地震力
     特殊荷载计算信息:                     不计算                 
     结构类别:                             框架结构               
     裙房层数:                             MANNEX=      0
     转换层所在层号:                      MCHANGE=      0
     墙元细分最大控制长度(m)               DMAX=   2.00
     墙元侧向节点信息:                     内部节点               
     是否对全楼强制采用刚性楼板假定        否                     
     采用的楼层刚度算法                    层间剪力比层间位移算法 
     结构所在地区                          全国                   

     风荷载信息 ..........................................
     修正后的基本风压 (kN/m2):             WO =   0.60
     地面粗糙程度:                         B 类                   
     结构基本周期(秒):                   T1 =   0.26
     体形变化分段数:                       MPART=      1
     各段最高层号:                         NSTi =      1
     各段体形系数:                         USi =   1.30

     地震信息 ............................................
     振型组合方法(CQC耦联;SRSS非耦联)            CQC                    
     计算振型数:                           NMODE=      3
     地震烈度:                             NAF =   7.00
     场地类别:                             KD =      3
     设计地震分组:                               一组                   
     特征周期                             TG =   0.45
     多遇地震影响系数最大值               Rmax1 =   0.08
     罕遇地震影响系数最大值               Rmax2 =   0.50
     框架的抗震等级:                      NF =      3
     剪力墙的抗震等级:                    NW =      3
     活荷质量折减系数:                    RMC =   0.50
     周期折减系数:                        TC =   1.00
     结构的阻尼比 (%):                    DAMP =   5.00
     是否考虑偶然偏心:                    是                     
     是否考虑双向地震扭转效应:            否                     
     斜交抗侧力构件方向的附加地震数             =      0

     活荷载信息 ..........................................
     考虑活荷不利布置的层数                从第 1 到1层           
     柱、墙活荷载是否折减                  不折算                 
     传到基础的活荷载是否折减              折算                   
     ------------柱,墙,基础活荷载折减系数-------------
          计算截面以上的层数---------------折减系数
                   1                          1.00
                   2---3                      0.85
                   4---5                      0.70
                   6---8                      0.65
                   9---20                     0.60
                     > 20                     0.55

     调整信息 ........................................
     中梁刚度增大系数:                     BK =   1.00
     梁端弯矩调幅系数:                     BT =   0.85
     梁设计弯矩增大系数:                   BM =   1.00
     连梁刚度折减系数:                    BLZ =   0.70
     梁扭矩折减系数:                       TB =   0.40
     全楼地震力放大系数:                  RSF =   1.00
     0.2Qo 调整起始层号:                  KQ1 =      0
     0.2Qo 调整终止层号:                  KQ2 =      0
     顶塔楼内力放大起算层号:              NTL =      0
     顶塔楼内力放大:                      RTL =   1.00
     九度结构及一级框架梁柱超配筋系数 CPCOEF91 =   1.15
     是否按抗震规范5.2.5调整楼层地震力IAUTO525 =      1
     是否调整与框支柱相连的梁内力   IREGU_KZZB =      0
     剪力墙加强区起算层号            LEV_JLQJQ =      1
     强制指定的薄弱层个数                NWEAK =      0

     配筋信息 ........................................
     梁主筋强度 (N/mm2):                    IB =    300
     柱主筋强度 (N/mm2):                    IC =    300
     墙主筋强度 (N/mm2):                    IW =    300
     梁箍筋强度 (N/mm2):                    JB =    210
     柱箍筋强度 (N/mm2):                    JC =    210
     墙分布筋强度 (N/mm2):                 JWH =    210
     梁箍筋最大间距 (mm):                   SB = 100.00
     柱箍筋最大间距 (mm):                   SC = 100.00
     墙水平分布筋最大间距 (mm):            SWH = 150.00
     墙竖向筋分布最小配筋率 (%):           RWV =   0.30
     单独指定墙竖向分布筋配筋率的层数:     NSW =      0
     单独指定的墙竖向分布筋配筋率(%):     RWV1 =   0.60

     设计信息 ........................................
     结构重要性系数:                       RWO =   1.00
     柱计算长度计算原则:                   有侧移                 
     梁柱重叠部分简化:                     不作为刚域             
     是否考虑 P-Delt 效应:                否                     
     柱配筋计算原则:                       按单偏压计算           
     钢构件截面净毛面积比:                   RN =   0.85
     梁保护层厚度 (mm):                     BCB =  30.00
     柱保护层厚度 (mm):                     ACA =  30.00
     是否按砼规范(7.3.11-3)计算砼柱计算长度系数: 否                     

     荷载组合信息 ........................................
     恒载分项系数:                         CDEAD=   1.20
     活载分项系数:                         CLIVE=   1.40
     风荷载分项系数:                       CWIND=   1.40
     水平地震力分项系数:                   CEA_H=   1.30
     竖向地震力分项系数:                   CEA_V=   0.50
     特殊荷载分项系数:                     CSPY =   0.00
     活荷载的组合系数:                     CD_L =   0.70
     风荷载的组合系数:                     CD_W =   0.60
     活荷载的重力荷载代表值系数:          CEA_L =   0.50

     剪力墙底部加强区信息.................................
     剪力墙底部加强区层数                    IWF=  1
     剪力墙底部加强区高度(m)        Z_STRENGTHEN=  4.70

     *********************************************************
     *                  各层的质量、质心坐标信息                   *
     *********************************************************

 层号    塔号    质心 X      质心 Y      质心 Z      恒载质量      活载质量
                               (m)         (m)          (t)          (t)
   1       1      7.971      25.871       4.700         40.9          0.9

     活载产生的总质量 (t):                          0.937
     恒载产生的总质量 (t):                         40.948
     结构的总质量 (t):                             41.885
     恒载产生的总质量包括结构自重和外加恒载
     结构的总质量包括恒载产生的质量和活载产生的质量
     活载产生的总质量和结构的总质量是活载折减后的结果 (1t = 1000kg)


     *********************************************************
     *             各层构件数量、构件材料和层高              *
     *********************************************************

 层号   塔号       梁数        柱数        墙数        层高       累计高度
                (混凝土)     (混凝土)     (混凝土)     (m)           (m)   

   1     1         7(25)       4(25)       0(25)      4.700         4.700
 

     *********************************************************
     *                    风荷载信息                         *
     *********************************************************

 层号  塔号   风荷载X      剪力X    倾覆弯矩X   风荷载Y      剪力Y    倾覆弯矩Y

   1     1      33.95       34.0       159.6      36.61       36.6       172.1

===========================================================================
             各楼层等效尺寸(单位:m,m**2)
===========================================================================

 层号   塔号    面积      形心X      形心Y   等效宽B   等效高H   最大宽BMAX   最小宽BMIN
   1      1     36.10      7.97     25.87      6.23      5.78        6.23        5.78

===========================================================================
             各楼层的单位面积质量分布(单位:kg/m**2)
===========================================================================

 层号   塔号    单位面积质量 g[i]      质量比 max(g[i]/g[i-1],g[i]/g[i+1])
   1      1         1160.08                        1.00
 
===========================================================================
                 计算信息              
===========================================================================
      Project File Name  : 1                                                   
 
      计算日期          : 2009. 1. 1                                           
      开始时间          :   11:59: 1                                           
 
      可用内存          :  391.00MB                                            
 
 第一步: 计算每层刚度中心、自由度等信息                                        
      开始时间          :   11:59: 1                                           
 
 第二步: 组装刚度矩阵并分解                                                    
      开始时间          :   11:59: 1                                           
      Calculate block information
      刚度块总数:   1
      自由度总数:        21
      大约需要    2.1MB  硬盘空间
          刚度组装:从      1 行到     21 行
 
 第三步: 地震作用分析                                                          
      开始时间          :   11:59: 1                                           
      方法 1 (侧刚模型)                                                        
          起始列 =  1     终止列 =  3
 
 第四步: 计算位移                                                              
      开始时间          :   11:59: 1                                           
      形成地震荷载向量                                                         
      形成风荷载向量                                                           
      形成垂直荷载向量                                                         
      Calculate Displacement
          LDLT 回代:从   1   列到  22 列
      写出位移文件                                                             
 
 第五步: 计算杆件内力                                                          
      开始时间          :   11:59: 1                                           
      活载随机加载计算                                                         
      计算杆件内力                                                             
          结束日期       : 2009. 1. 1
           时间          :   11:59: 1
          总用时         :    0: 0: 0

 ===========================================================================
           各层刚心、偏心率、相邻层侧移刚度比等计算信息
  Floor No     : 层号
  Tower No     : 塔号
  Xstif,Ystif : 刚心的 X,Y 坐标值
  Alf          : 层刚性主轴的方向
  Xmass,Ymass : 质心的 X,Y 坐标值
  Gmass        : 总质量
  Eex,Eey     : X,Y 方向的偏心率
  Ratx,Raty   : X,Y 方向本层塔侧移刚度与下一层相应塔侧移刚度的比值
  Ratx1,Raty1 : X,Y 方向本层塔侧移刚度与上一层相应塔侧移刚度70%的比值
                 或上三层平均侧移刚度80%的比值中之较小者
  RJX,RJY,RJZ: 结构总体坐标系中塔的侧移刚度和扭转刚度
 ===========================================================================
  Floor No.   1     Tower No.   1
  Xstif=     7.9710(m)     Ystif=    25.8709(m)     Alf  =    45.0000(Degree)
  Xmass=     7.9710(m)     Ymass=    25.8709(m)     Gmass=    42.8214(t)
  Eex  =     0.0000        Eey  =     0.0000
  Ratx =     1.0000        Raty =     1.0000
  Ratx1=     1.2500        Raty1=     1.2500  薄弱层地震剪力放大系数= 1.00
  RJX  = 2.1247E+04(kN/m)  RJY  = 2.1241E+04(kN/m)  RJZ  = 0.0000E+00(kN/m)
 ---------------------------------------------------------------------------

============================================================================
抗倾覆验算结果
============================================================================

             抗倾覆弯矩Mr     倾覆弯矩Mov    比值Mr/Mov    零应力区(%)

 X风荷载         1319.4          106.4          12.40           0.00
 Y风荷载         1214.7          114.7          10.59           0.00
 X 地 震         1319.4          105.0          12.57           0.00
 Y 地 震         1214.7          105.0          11.57           0.00


============================================================================
 结构整体稳定验算结果
============================================================================
    层号   X向刚度     Y向刚度     层高     上部重量     X刚重比     Y刚重比
     1   0.212E+05   0.212E+05    4.70        419.      238.42      238.35
 
 该结构刚重比Di*Hi/Gi大于10,能够通过高规(5.4.4)的整体稳定验算
 该结构刚重比Di*Hi/Gi大于20,可以不考虑重力二阶效应

     **********************************************************************
     *                    楼层抗剪承载力、及承载力比值                    *
     **********************************************************************

          Ratio_Bu: 表示本层与上一层的承载力之比

     ----------------------------------------------------------------------
     层号   塔号    X向承载力    Y向承载力   Ratio_Bu:X,Y
     ----------------------------------------------------------------------
        1   1     0.1346E+03  0.1585E+03    1.00    1.00


 
楼面荷载图(KN/M2)


======================================================================
              周期、地震力与振型输出文件
                    (侧刚分析方法)
======================================================================

    考虑扭转耦联时的振动周期(秒)、X,Y 方向的平动系数、扭转系数

    振型号    周 期      转 角          平动系数 (X+Y)       扭转系数
      1       0.2790     90.02        1.00 ( 0.00+1.00 )      0.00
      2       0.2790      0.02        1.00 ( 1.00+0.00 )      0.00
      3       0.2414      0.00        0.00 ( 0.00+0.00 )      1.00

   地震作用最大的方向 =     0.000 (度)


   ============================================================

    仅考虑 X 向地震作用时的地震力
   Floor : 层号
   Tower : 塔号
   F-x-x : X 方向的耦联地震力在 X 方向的分量
   F-x-y : X 方向的耦联地震力在 Y 方向的分量
   F-x-t : X 方向的耦联地震力的扭矩

   振型   1 的地震力
   -------------------------------------------------------
   Floor     Tower       F-x-x         F-x-y         F-x-t
                         (kN)          (kN)         (kN-m)
      1        1          0.00         -0.01          0.00

   振型   2 的地震力
   -------------------------------------------------------
   Floor     Tower       F-x-x         F-x-y         F-x-t
                         (kN)          (kN)         (kN-m)
      1        1         33.51          0.01          0.01

   振型   3 的地震力
   -------------------------------------------------------
   Floor     Tower       F-x-x         F-x-y         F-x-t
                         (kN)          (kN)         (kN-m)
      1        1          0.00          0.00         -0.01

   各振型作用下 X 方向的基底剪力
   -------------------------------------------------------
            振型号       剪力(kN)
               1          0.00
               2         33.51
               3          0.00

   各层 X 方向的作用力(CQC)
   Floor    : 层号
   Tower    : 塔号
   Fx       : X 向地震作用下结构的地震反应力
   Vx       : X 向地震作用下结构的楼层剪力
   Mx       : X 向地震作用下结构的弯矩
   Static Fx: 静力法 X 向的地震力
  
 
------------------------------------------------------------------------------------------
   Floor     Tower        Fx           Vx (分塔剪重比) (整层剪重比)      Mx        Static Fx
                         (kN)         (kN)                             (kN-m)         (kN)

                     (注意:下面分塔输出的剪重比不适合于上连多塔结构)

      1        1         33.51         33.51( 8.00%)      ( 8.00%)        157.49         33.51


       抗震规范(5.2.5)条要求的X向楼层最小剪重比 =   1.60%

       X 方向的有效质量系数:   100.00%

   ============================================================

    仅考虑 Y 向地震时的地震力
   Floor : 层号
   Tower : 塔号
   F-y-x : Y 方向的耦联地震力在 X 方向的分量
   F-y-y : Y 方向的耦联地震力在 Y 方向的分量
   F-y-t : Y 方向的耦联地震力的扭矩

   振型   1 的地震力
   -------------------------------------------------------
   Floor     Tower       F-y-x         F-y-y         F-y-t
                         (kN)          (kN)         (kN-m)
      1        1         -0.01         33.51          0.00

   振型   2 的地震力
   -------------------------------------------------------
   Floor     Tower       F-y-x         F-y-y         F-y-t
                         (kN)          (kN)         (kN-m)
      1        1          0.01          0.00          0.00

   振型   3 的地震力
   -------------------------------------------------------
   Floor     Tower       F-y-x         F-y-y         F-y-t
                         (kN)          (kN)         (kN-m)
      1        1          0.00          0.00          0.00

   各振型作用下 Y 方向的基底剪力
   -------------------------------------------------------
            振型号       剪力(kN)
               1         33.51
               2          0.00
               3          0.00

   各层 Y 方向的作用力(CQC)
   Floor    : 层号
   Tower    : 塔号
   Fy       : Y 向地震作用下结构的地震反应力
   Vy       : Y 向地震作用下结构的楼层剪力
   My       : Y 向地震作用下结构的弯矩
   Static Fy: 静力法 Y 向的地震力
   ------------------------------------------------------------------------------------------
   Floor     Tower        Fy           Vy (分塔剪重比) (整层剪重比)      My        Static Fy
                         (kN)         (kN)                             (kN-m)         (kN)

                     (注意:下面分塔输出的剪重比不适合于上连多塔结构)

      1        1         33.51         33.51( 8.00%)      ( 8.00%)        157.49         33.51


       抗震规范(5.2.5)条要求的Y向楼层最小剪重比 =   1.60%

       Y 方向的有效质量系数:   100.00%

   ============================================================
   耦联时的振型
   Floor  : 层号
   Tower  : 塔号
   X-Disp : 耦联振型在 X 方向的位移分量
   Y-DISP : 耦联振型在 Y 方向的位移分量
   Angle-Z: 耦联振型绕 Z 轴的转角

   振型  1
   -------------------------------------------------------
   Floor     Tower      X-Disp        Y-DISP        Angle-Z
                         (mm)          (mm)          (rad)
      1        1         0.000        -1.000         0.000

   振型  2
   -------------------------------------------------------
   Floor     Tower      X-Disp        Y-DISP        Angle-Z
                         (mm)          (mm)          (rad)
      1        1         1.000         0.000         0.000

   振型  3
   -------------------------------------------------------
   Floor     Tower      X-Disp        Y-DISP        Angle-Z
                         (mm)          (mm)          (rad)
      1        1         0.000         0.000        -1.000

 ==========各楼层地震剪力系数调整情况 [抗震规范(5.2.5)验算]==========

   层号     X向调整系数      Y向调整系数
    1          1.000             1.000

 

 


 

混凝土构件配筋简图

 

 

 

 

 

 

 

 

 


混凝土梁截面设计弯矩包络图

 

 

 

 

 

 

 


 


首层梁裂缝图

 

 

 

 

 

现浇板弯矩图


 

现浇板裂缝宽度图
 

现浇板跨中挠度图

 

现浇板跨中剪力图

 
 2.1.3.5 The project amount of concrete is calculated:
(1)Pool wall: [(L-t1)+(B-t1)]* 2* t1* h2
=[(6.200-0.450)+(4.400-0.450)]* 2* 0.450* 6.300 =55.00 m3
(2)Baseplate: (L+2* t2)* (B+2* t2)* h3
=(6.200+2* 0.300)* (4.400+2* 0.300)* 0.500 =17.00 m3
(3)Total square quantity of pond concrete  =55.00+17.00 =72.00 m3
-----------------------------------------------------------------------
¡¾Pay attention to the straight design of pond V1.0 edition    Date: 2009-01-02 02:15:58 ¡¿
=======================END OF FILE =================================
2.2  Enter the well and calculate the book
Carry out the norm:
" concrete structure design specification " (GB 50010-2002 ), this text is abbreviated as " the concrete norm "
" basic design specification of building ground " (GB 50007-2002 ), this text is abbreviated as " the norm of the ground "
" structures structure design specification of the drainage system that supply water " (GB50069-2002 ), this text is abbreviated as" giving and draining off

water the structure norm "
" armored concrete pond structural design rules of the drainage system that supply water " (CECS138-2002 ), this text is abbreviated as " the structure rules

of the pond "
-----------------------------------------------------------------------
2.2.1 Basic materials
2.2.1.1 Information of geometry
Type of the pond: There is no top cover  Half on the ground
Length L =2.500m, width B =2.000m, high H =6.800m, the bottom elevation of the baseplate =-6.500m
Thick h3 of bottom of the pool =500mm, thick t1 of pool wall =250mm, chooses length t2 outside the baseplate =300mm
Note: Ground elevation is ¡À 0.000.
   
(plane figure)                 (section system )
2.2.1.2 Soil water information
Soil natural serious degrees of 18.00 kN/m3, soil saturation serious degrees of 20.00kN/m3, 30 degrees of angles of friction in soil
The ground bears the weight of the characteristic value fak of strength =100.0kPa, the width revises coefficient ¦Ç b =0.00, bury and revise coefficient ¦Ç d

deeply =1.00
Water table elevation - 3.000m, 6.300m of depth of water in the pool, water duplicates each other and spends 10.00kN/m3 in the pool,
Floating asks strength to roll over and reduce coefficient 1.00 , resist and float safety coefficient Kf =1.05
2.2.1.3 Load information
Live load: Ground 10.00kN/m2, coefficient 0.90 of making up value
Load and divide a coefficient permanently : Pond dead weight is 1.20 , other 1.27
The live load divides a coefficient: Underground water pressure 1.27 , other 1.27
The live load is worth coefficient accurately for ever: The roof is 0.40, ground is 0.40, groundwater is 1.00, warm humidity 1.00
Do not consider warm humidity function .
2.2.1.4 Concrete information of reinforcing bar
Concrete: Grade C30, serious degrees of 25.00kN/m3, to moor is loose than 0.20
The thickness of antiabrasion layer (mm ): Pool wall (35 inside, 35 outside), the baseplate (above 35, leave 35)
The rank of reinforcing bar : HRB335, the limit of width of crack: 0.10mm, matches the muscle and adjusts coefficient: 1.00
2.2.2 Calculate the content
 (1)The ground bears the weight of strength checking computations
 (2)Resist and float checking computations
 (3)Load and calculate
 (4)The internal force (not consider temperature function ) is calculated
 (5)Match the muscle to calculate
 (6)Crack checking computations
 (7)The project amount of concrete is calculated
2.2.3 Computational process and result
The unit proves : Curved square : kN.m/m    The area of reinforcing bar : The width of mm2 crack: mm
Calculating proves: The two-way board is calculated to press the form of checking
Load permanently : Conduct oneself with dignity pond structure,not the vertical in soil to and side direction pressure,hold inside water pressure strength .
Live load: The live load of the roof, ground live load, underground water pressure strength , the warm humidity changes function .
The width of crack is calculated according to the long-term the effect is made accurately up .
2.2.3.1 The ground bears the weight of strength checking computations
 (1)The basis pressure calculating
a.The pond conducts oneself with dignity Gc is calculated
Dead weight G2 of pool wall =305.00kN
Baseplate dead weight G3 =100.75kN
Pond structure dead weight Gc =G2+G3 =405.75 kN
b.Heavy Gw of water is calculated in the pool
Heavy Gw of water in the pool =189.00 kN
c.Cover soil weight to calculate
The pool carries and covers soil weight Gt1 =0 kN
The pool carries groundwater weight Gs1 =0 kN
Choose and cover soil weight Gt2 outside the baseplate =257.04 kN
Choose groundwater weight Gs2 outside the baseplate =91.80 kN
Cover soil total weight Gt above basis = Gt1 + Gt2 =257.04 kN
Total weight Gs of groundwater above basis = Gs1 + Gs2 =91.80 kN
d.Function Gh of live load
Effort Gh1 of live load of the roof =7.50 kN
Effort Gh2 of live load of ground =30.60 kN
Effort total Gh of live load =Gh1+Gh2 =38.10 kN
e.Basis pressure Pk
The area of basis: A =(L+2* t2)* (B+2* t2) =3.100* 2.600 =8.06 m2
Basis pressure: Pk =(Gc+Gw+Gt+Gs+Gh)/A
=(405.75+189.00+257.04+91.80+38.10)/8.060 =121.80 kN/m2
 (2)Revise the ground and bear the weight of strength
a.Calculate basic bottom surface weighted average serious degrees of rm of soil the above
rm =[3.500* (20.00-10)+3.000* 18.00]/6.500
=13.69 kN/m3
b.Calculate basic bottom surface following serious degrees of r of soil
Consider groundwater function , fetch and float heavy degree, r =20.00-10 =10.00kN/m3
c.According to the request of basic norm , revise the ground and bear the weight of strength :
fa = + ¦Çd¦Ãm (d - 0.5 ) of fak + ¦Çb ¦Ã (b - 3 )
=100.00+0.00* 10.00* (3.000-3)+1.00* 13.69* (6.500-0.5)
=182.15 kPa
 (3)Conclusion: Pk =121.80 < fa =182.15 KPa, the ground bears the weight of strength and meets the demands.
2.2.3.2 Resist and float checking computations
Resist buoyancy Gk =Gc+Gt+Gs =405.75+257.04+91.80 =754.59 kN
Buoyancy F =(2.500+2* 0.300)* (2.000+2* 0.300)* 3.500* 10.0* 1.00
=282.10 kN
Gk/F =754.59/282.10 =2.67 >Kf =1.05, resist and float and meet the demands.
2.2.3.3 Load and calculate
 (1)The pool wall loads and calculates:
a.Load outside the pool:
Initiative soil pressure coefficient Ka =0.33
The soil pressure of the side direction loads and makes up(kN/m2):
Position (elevation )  Standard value of the soil pressure  Standard value of water pressure strength  Standard value in year that live  Make

up basically  Make accurately up
Pool wall top (0.300 )  0.00 0.00 0.00 0.00 0.00
Ground (0.000 )  0.00 0.00 3.33 3.81 1.33
The groundwater is located in (- 3.000)  18.00 0.00 3.33 26.67 19.33
Baseplate top surface (- 6.000)  28.00 30.00 3.33 77.47 59.33
b.Water pressure strength of the bottom in the pool: Standard value =63.00 KN/m2, makes the designing value up basically =80.01 kN/m2
 (2)Whether baseplate is it calculate to load (whether pool anhydrous, fill out soil outside the pool).
Standard value Gc that the structure of the pond conducts oneself with dignity =405.75kN
The above heavy standard value Gt of soil of bottom surface that basic =257.04kN
The above heavy standard value Gs of water of bottom surface that basic =91.80kN
The above standard value Gh of year of work of bottom surface that basic =38.10kN
The pond baseplate , the above vertical strokes , is made up basically to the pressure:
Qb = (405.75* 1.20+257.04* 1.27+91.80* 1.27+38.10* 1.27* 0.90)/8.060
=120.78kN/m2
The pond baseplate , the above vertical strokes , is made accurately up to the pressure:
Qbe = (405.75+257.04+91.80* 1.00+1.50* 5.000* 0.40+10.00* 3.060* 0.40)/8.060
=95.51kN/m2
The cloth is made netly up basically at the bottom of the board:
Q =120.78-0.500* 25.00* 1.20
=105.78 kN/m2
The cloth is made netly accurately up against strength at the bottom of the board:
Qe =95.51-0.500* 25.00
=83.01 kN/m2
 (3)The baseplate loads calculated (have water in the pool, there is no soil outside the pool):
The pond baseplate , the above vertical strokes , is made up basically to the pressure:
Qb = [405.75* 1.20+(2.000* 1.500* 6.300)* 10.00* 1.27]/8.060 =90.19kN/m2
The cloth is made netly up basically at the bottom of the board:
Q =90.19-(0.500* 25.00* 1.20+6.300* 10.00* 1.27) = -4.82kN/m2
The pond baseplate , the above vertical strokes , is made accurately up to the pressure:
Qbe = [405.75+(2.000* 1.500* 6.300)* 10.00]/8.060 =73.79kN/m2
The cloth is made netly accurately up against strength at the bottom of the board:
Qe =73.79-(0.500* 25.00+6.300* 10.00) = -1.71kN/m2
2.2.3.4 Internal force, match the muscle and crack to calculate
Curved straight negative sign rule of square :
Pool wall: Inboard draw for, outside draw for shoulder
Baseplate: Upside draw for , go to side draw for shoulder
Load the mode of combination:
(1). Soil pressure function outside the pool (whether pool anhydrous, fill out soil outside the pool)
(2). Water pressure strength function in the pool (whether pool there is water, there is no soil outside the pool)
(3)L side pool wall internal force:
Calculate the span: Lx =2.250 m, Ly =6.300 M, trilateral and regular, carries and props up simply
Type of the pool wall: Deep pool wall
Computing technology: Whether part, 2L of 0<H<, according to trilateral and regular, carry the free two-way board is calculated. Lx =2.250,Ly =4.500
H> 2L part is calculated to the one-way board according to the level
H =Curved square (kN.m/m ) of pressure function of soil outside 2L place pool:
In the level turns towards and steps: Make up basically: 4.69, make accurately up : 3.34
The level is to the edge: Make up basically: -9.38, make accurately up : -6.68
H =Curved square (kN.m/m ) of strength function of water pressure in 2L place pool:
In the level turns towards and steps: Make up basically: -4.82, make accurately up : -3.80
The level is to the edge: Make up basically: 9.64, make accurately up : 7.59
H =2L place level is to the internal force, the level calculated with 0<H<2L part according to the two-way board is to the internal force, fetch great value.
Make the curved square form of function (kN.m/m ) up basically
Position  Soil pressure outside the pool  Water pressure strength in the pool  Warm humidity function  Make up basically
In the inboard- the level is stepped  10.12 - - 10.12
Horizontal edge  - 21.59 - 21.59
Vertical while stepping  0.62 - - 0.62
Vertical top edge  - 0.00 - 0.00
Vertical reason under  - 20.26 - 20.26
While stepping outside- the level  - -10.44  - -10.44
Horizontal edge  -20.92  - - -20.92
Vertical while stepping  - -0.64  - -0.64
Vertical top edge  0.00 - - 0.00
Vertical reason under  -19.62  - - -19.62
Make the curved square form of function (kN.m/m ) up accurately for ever
Position  Soil pressure outside the pool  Water pressure strength in the pool  Warm humidity function  Make accurately up
In the inboard- the level is stepped  7.64 - - 7.64
Horizontal edge  - 17.00 - 17.00
Vertical while stepping  0.47 - - 0.47
Vertical top edge  - 0.00 - 0.00
Vertical reason under  - 15.96 - 15.96
While stepping outside- the level  - -8.22  - -8.22
Horizontal edge  -15.77  - - -15.77
Vertical while stepping  - -0.50  - -0.50
Vertical top edge  0.00 - - 0.00
Vertical reason under  -14.98  - - -14.98
(4)B side pool wall internal force:
Calculate the span: Lx =1.750 m, Ly =6.300 M, trilateral and regular, carries and props up simply
Type of the pool wall: Deep pool wall
Computing technology: Whether part, 2L of 0<H<, according to trilateral and regular, carry the free two-way board is calculated. Lx =1.750,Ly =3.500
H> 2L part is calculated to the one-way board according to the level
H =Curved square (kN.m/m ) of pressure function of soil outside 2L place pool:
In the level turns towards and steps: Make up basically: 4.40, make accurately up : 3.25
The level is to the edge: Make up basically: -8.81, make accurately up : -6.51
H =Curved square (kN.m/m ) of strength function of water pressure in 2L place pool:
In the level turns towards and steps: Make up basically: -4.54, make accurately up : -3.57
The level is to the edge: Make up basically: 9.08, make accurately up : 7.15
H =2L place level is to the internal force, the level calculated with 0<H<2L part according to the two-way board is to the internal force, fetch great value.
Make the curved square form of function (kN.m/m ) up basically
Position  Soil pressure outside the pool  Water pressure strength in the pool  Warm humidity function  Make up basically
In the inboard- the level is stepped  6.84 - - 6.84
Horizontal edge  - 14.69 - 14.69
Vertical while stepping  0.37 - - 0.37
Vertical top edge  - 0.00 - 0.00
Vertical reason under  - 12.56 - 12.56
While stepping outside- the level  - -7.07  - -7.07
Horizontal edge  -14.24  - - -14.24
Vertical while stepping  - -0.38  - -0.38
Vertical top edge  0.00 - - 0.00
Vertical reason under  -12.16  - - -12.16

Make the curved square form of function (kN.m/m ) up accurately for ever
Position  Soil pressure outside the pool  Water pressure strength in the pool  Warm humidity function  Make accurately up
In the inboard- the level is stepped  5.19 - - 5.19
Horizontal edge  - 11.57 - 11.57
Vertical while stepping  0.28 - - 0.28
Vertical top edge  - 0.00 - 0.00
Vertical reason under  - 9.89 - 9.89
While stepping outside- the level  - -5.56  - -5.56
Horizontal edge  -10.78  - - -10.78
Vertical while stepping  - -0.30  - -0.30
Vertical top edge  0.00 - - 0.00
Vertical reason under  -9.29  - - -9.29
(5)Internal force of the baseplate:
Calculate the span: Lx =2.250m, Ly =1.750m, here and there supports simply + the pool wall transmits the curved square
Calculated by two-way board.
1.Fill out the soil outside the pool, load and make the curved square form of function (kN.m/m ) up when being anhydrous in the pool
Make the curved square form of function up basically
Position  Simple Zhi Ji bottom is against strength  The pool wall transmits the curved square  The curved square superposing
In upside- L turns towards and steps  14.39 - -
In B turns towards and steps  21.08 - 11.71
Put the side - L to the edge  0.00 -12.16  -12.16
B is to the edge  0.00 -19.62  -19.62
In L turns towards and steps  - -15.62  -1.23
In B turns towards and steps  - -9.37  -

Make the curved square form of function up accurately for ever
Position  Simple Zhi Ji bottom is against strength  The pool wall transmits the curved square  The curved square superposing
In upside- L turns towards and steps  11.29 - -
In B turns towards and steps  16.54 - 9.39
Put the side - L to the edge  0.00 -9.29  -9.29
B is to the edge  0.00 -14.98  -14.98
In L turns towards and steps  - -11.93  -0.64
In B turns towards and steps  - -7.16  -
2.There is water in the pool, when there is no soil outside the pool, load and make the curved square form of function (kN.m/m ) up
Make the curved square form of function up basically
Position  Simple Zhi Ji bottom is against strength  The pool wall transmits the curved square  The curved square superposing
In upside- L turns towards and steps  -0.66  16.13 15.48
In B turns towards and steps  -0.96  9.68 8.72
L is to the edge  0.00 12.56 12.56
B is to the edge  0.00 20.26 20.26
Make the curved square form of function up accurately for ever
Position  Simple Zhi Ji bottom is against strength  The pool wall transmits the curved square  The curved square superposing
In upside- L turns towards and steps  -0.23  12.70 12.47
In B turns towards and steps  -0.34  7.62 7.28
L is to the edge  0.00 9.89 9.89
B is to the edge  0.00 15.96 15.96
(6)Match the muscle and crack:
Match the muscle computing technology: Calculated according to the single muscle that the board is drawn the reinforcing bar by the curved component.
The crack is calculated and calculated according to the appendix A formula of " structure rules of the pond ".
According to making up and curving the square and calculating and matching the muscle basically, according to making the curved square up and calculating the

crack accurately for ever, the result is as follows:

¢ÙL side pool wall matches the muscle and crack form (curved square: KN.m/m, area: Mm2/m, the crack: mm)
Position  Curved square  Calculate the area  Mix the reinforcing bar in fact  Mix the area in fact  Width of crack
In the inboard- the level is stepped  10.12 536 D12@200  565 0.06
Horizontal edge  21.59 536 D12@150  754 0.08
Vertical while stepping  0.62 536 D12@200  565 0.00
Vertical top edge  0.00 536 D12@200  565 0.00
Vertical reason under  20.26 536 D12@150  754 0.08
While stepping outside- the level  -10.44  536 D12@200  565 0.07
Horizontal edge  -20.92  536 D12@150  754 0.08
Vertical while stepping  -0.64  536 D12@200  565 0.00
Vertical top edge  0.00 536 D12@200  565 0.00
Vertical reason under  -19.62  536 D12@150  754 0.07
¢ÚB side pool wall matches the muscle and crack form (curved square: KN.m/m, area: Mm2/m, the crack: mm)
Position  Curved square  Calculate the area  Mix the reinforcing bar in fact  Mix the area in fact  Width of crack
In the inboard- the level is stepped  6.84 536 D12@200  565 0.04
Horizontal edge  14.69 536 D12@200  565 0.10
Vertical while stepping  0.37 536 D12@200  565 0.00
Vertical top edge  0.00 536 D12@200  565 0.00
Vertical reason under  12.56 536 D12@200  565 0.08
While stepping outside- the level  -7.07  536 D12@200  565 0.05
Horizontal edge  -14.24  536 D12@200  565 0.09
Vertical while stepping  -0.38  536 D12@200  565 0.00
Vertical top edge  0.00 536 D12@200  565 0.00
Vertical reason under  -12.16  536 D12@200  565 0.08

¢ÛThe baseplate matches the muscle and crack form (curved square: KN.m/m, area: Mm2/m, the crack: mm)
Position  Curved square  Calculate the area  Mix the reinforcing bar in fact  Mix the area in fact  Width of crack
In upside- L turns towards and steps  15.48 1072 D16@150  1340 0.02
In B turns towards and steps  11.71 1072 D16@150  1117 0.02
L is to the edge  12.56 1072 D16@150  1340 0.02
B is to the edge  20.26 1072 D16@150  1340 0.03
Put the side - in L turns towards and steps  -1.23  1072 D16@150  1340 0.00
In B turns towards and steps  - - - - -
L is to the edge  -12.16  1072 D16@150  1340 0.02
B is to the edge  -19.62  1072 D16@150  1340 0.03
Crack checking computations is satisfied .
2.2.3.5 The project amount of concrete is calculated:
(1)Pool wall: [(L-t1)+(B-t1)]* 2* t1* h2
=[(2.500-0.250)+(2.000-0.250)]* 2* 0.250* 6.300 =12.60 m3
(2)Baseplate: (L+2* t2)* (B+2* t2)* h3
=(2.500+2* 0.300)* (2.000+2* 0.300)* 0.500 =4.03 m3
(3)Total square quantity of pond concrete  =12.60+4.03 =16.63 m3
-----------------------------------------------------------------------
¡¾Pay attention to the straight design of pond V1.0 edition    Date: 2009-01-02 00:36:27 ¡¿
=======================END OF FILE =================================

Calculate the book in 2.3 top awnings over a gateway
Total information  ..............................................
Structural material information: Steel concrete structure                
Concrete unit weight  (kN/m3): Gc =25.00
Steel unit weight  (kN/m3): Gs =78.00
Contained angle of horizontal strength  (Rad): ARF =0.00
Story of the basement is counted : MBASE =0
Vertical to the information of loading and calculating: Construct with carry on one's shoulder or back the way of calculating according to simulation  
The wind loads the information of calculating: Calculating X, the wind in Y two directions loads
Calculate information in earthquake strength : Calculate X, the earthquake strength of Y two directions
Load the information of calculating specially: Do not calculate                  
Structure classification : Frame structure                
Story of skirt room is counted : MANNEX =0
Change layer it in one layer of number : MCHANGE =0
Yuan subdivide the largest length of controlling in the wall (m)                DMAX =2.00
Whether wall yuans of side direction nodal message. Inside node                
Whether adopt the rigidity floor to assume to the whole floor by force         Deny
Floor rigidity algorithm adopted                     Cut strength than the displacement algorithm among layer among layer  
Structure location                           The whole country                    

The wind loads information  ..........................................
Basic wind pressure after revising  (kN/m2): WO =0.60
Coarse degree of ground : B Kind
Basic cycle of structure ( Second): T1 =0.26
Change counts bodily form by stage: MPART =1
Every section of top number : NSTi =1
Every section of bodily form coefficient: USi =1.30

Earthquake information  ............................................
The shaking type combined method (CQC coupling is united ; SRSS is not the coupling to unite ) CQC                     
Calculate the shaking type to count : NMODE =3
Earthquake intensity: NAF =7.00
Place classification : KD =3
Design the earthquake and divide into groups: One group                    
Characteristic cycle TG =0.45
It influences coefficient maximum Rmax1 to meet more earthquakes =0.08
It influences coefficient maximum Rmax2 to meet the earthquake rarly =0.50
The grade of antidetonation of the frame : NF =3
Cut the grade of antidetonation of the strength wall: NW =3
Living burden quality rolls over the coefficient of reducing: RMC =0.50
Cycle rolls over the coefficient of reducing: TC =1.00
Structure damping than  (%): DAMP =5.00
Whether consider that accidental partial.
Whether consider that the two-way earthquake turns back the effect. Deny
Hand in the additional earthquake of resisting the component direction of the side force to count obliquly              =0

Live load information  ..........................................
Consider carrying on one's shoulder or back unfavorable layer that assigns and counting alive                 From  1 is to 1 floor            
Whether post, wall live load are rolled over and reduced                   Do not convert                  
Pass to the basic live load and roll over and reduce               Conversion                    
------------Post, the wall, the basic live load rolls over the coefficient of reducing -------------
Calculate that layer above section is counted ---------------Roll over the coefficient of reducing
                   1                          1.00
2---3                      0.85
4---5                      0.70
6---8                      0.65
9---20                     0.60
>20 0.55

Adjust information  ........................................
China's roof beam rigidity increases coefficient: BK =1.00
Curved square amplitude modulation coefficient in the roof beam end: BT =0.85
The roof beam is designed the curved square increases coefficient: BM =1.00
Even roof beam rigidity rolls over the coefficient of reducing: BLZ =0.70
The roof beam torsion rolls over the coefficient of reducing: TB =0.40
The earthquake strength of the whole floor enlarges coefficient: RSF =1.00
0.2Qo adjusts initial layer of number : KQ1 =0
0.2Qo adjusts and stops one layer of number : KQ2 =0
Carry the internal force of tower building to enlarge and start at one story of brass-wind instruments: NTL =0
Carry the internal force of tower building to enlarge: RTL =1.00
Nine degrees of structure and first class frame set a roof beam in place the post exceeds and matches muscle coefficient CPCOEF91 =1.15
Whether adjust floor earthquake strength IAUTO525 on 5.2.5 according to the antidetonation norm =1
Whether adjust roof beam internal force IREGU linking with frame pillar _ KZZB =0
Cut the wall strengthening area of strength start at one story of brass-wind instruments LEV _ JLQJQ =1
Force designated each of weakness counting NWEAK =0

Match muscle information  ........................................
Main intensity of muscle of roof beam  (N/mm2): IB =300
Main intensity of muscle of the post  (N/mm2): IC =300
Main intensity of muscle of the wall  (N/mm2): IW =300
Intensity of roof beam hoop muscle  (N/mm2): JB =210
Intensity of post hoop muscle  (N/mm2): JC =210
The wall is distributed the intensity of muscle  (N/mm2): JWH =210
The largest interval of roof beam hoop muscle  (mm): SB =100.00
The largest interval of post hoop muscle  (mm): SC =100.00
The level of the wall is distributed the largest interval of muscle  (mm): SWH =150.00
The wall is distributed and matched the muscle rate vertically minimumly to the muscle  (%): RWV =0.30
Appoint the wall to count vertically to story distributing the muscle and matching the muscle rate alone: NSW =0
Whether designated wall vertical to distribute muscle buy the muscle rate (%) alone. RWV1 =0.60

Design information  ........................................
Importance coefficient of the structure: RWO =1.00
Calculate the principle in computational length of the post: There are sides that are moved                  
Liang Zhu overlaps and simplifies partly: Not just regarded as the land              
Whether consider P-Delt effect. Deny
The post matches the muscle and calculates the principle: Calculated by single bias voltage            
It is the sectional in component in steel net Mao area than: RN =0.85
Thickness of antiabrasion layer of roof beam  (mm): BCB =30.00
Thickness of antiabrasion layer of the post  (mm): ACA =30.00
Whether calculate concrete post computational length coefficient according to the concrete norm (7.3.11-3 ). Deny

Load the information of making up  ........................................
Divide a coefficient in permanent year: CDEAD =1.20
Live and divide a coefficient in year: CLIVE =1.40
The wind loads and divides a coefficient: CWIND =1.40
Horizontal earthquake strength divides a coefficient: CEA _ H =1.30
Divide a coefficient vertically to earthquake strength : CEA _ V =0.50
Load and divide a coefficient specially: CSPY =0.00
Association coefficient of the live load: CD _ L =0.70
Association coefficient which the wind loads: CD _ W =0.60
The gravity of the live load loads representative value coefficient: CEA _ L =0.50

Cut the information of strengthening area of wall bottom of strength .................................
Cut the story of strengthening area of wall bottom of strength count IWF =1
Cut the height of strengthening area of wall bottom of strength (m)         Z _ STRENGTHEN =4.70

 

 

 

武汉翻译公司

2012.10.30

  返回>>Top
-x